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A study is made of the propagation of waves in a viscoelastic solid from a Heaviside step 
function plane source (plane waves) and from a Heaviside step function point source 
(spherical waves). The work is based on solutions of a normalized form of the Stokes wave 
equation, and the displacements are expressed in terms of finite integrals which are readily 
evaluated by numerical quadrature. A comparison is made with the work of Ricker, and with 
earlier work of the present author. 

1. INTR~DUC~ON 

In a recent paper the author [ 1  J has shown how Ricker’s generating, displacement, 
velocity, and acceleration functions pertaining to the propagation of a  pulse in a 
viscoelastic medium [2] can be transformed into finite integrals which are easily 
evaluated by numerical quadrature. The present paper extends these results to cover a 
Heaviside step function-type source and makes a comparison with earlier results due 
to the author [ 3, 4  ] for this same type of source. The treatment is based on a nor- 
malized form of the Stokes wave equation, and the plane wave propagation from a 
plane source is treated simultaneously with the spherical wave propagation from a 
point source. An interesting result concerning the shape of the displacement-time 
graph ~(x, f) at any given distance x from the plane source is presented. A time in- 
tegral and various derivatives of ~(x, t) are expressed as finite integrals, and in fact 
the derivation of these integral representations is the main purpose of this paper. 

2. THEORY 

Ricker [ 21 has shown that the function 

w1 =e - nx  cos P(t - x/u) (1) 

satisfies the normalized Stokes wave equation 
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if 
p = tan 24, 
a = tan Zf$(cos 2$)‘j2 sin f$, 

P/U= tan 29(cos 2#)‘;‘2 cos 4. 
(3) 

Here f denotes numerical (dimensionless) time, and x denotes numerical distance 
from a plane [ 1, 2 ], while Q (0 < 4 < 7c/4) is a convenient parametric representation 
for the numerical angular frequency /I. 

By differentiating (1) with respect to t, we also readily obtain the solution 

w2= e ax sin P(t - x/y), 

with the same values of a and a/v. 

(4) 

As observed by Ricker [2] we may treat the problem of plane wave propagation 
from a plane source, and the spherical wave propagation from a point source 
simultaneously. This is done by noting that the normalized Stokes wave equation for 
the latter problem has the form 

where R denotes the radial distance from the source. Clearly, solutions of (5) may be 
obtained from solutions of (2) by replacing x by R and dividing by R; or in symbols 

W, 0 = v(R, t)/R. (6) 

In this paper we propose merely to treat the plane wave problem, and it is evident 
from (6) how to obtain solutions to the spherical wave problem, the same transforma- 
tion being applied, of course, to the source. 

Going back to Eqs. (lk(4), we assume that VI, I+Y~, or wZ represents particle dis- 
placement in the positive x direction at numerical time t for any particle in the plane 
at numerical distance x from the source plane ?c = 0. 

By setting x = 0 it is evident that our solutions (1) and (4) of (2) become 

and 

ly, = cospt (7) 

y2 = sin /It, (8) 

respectively, in the plane x = 0, and we can represent our actual source by superposi- 
tion of such elementary solutions. 

We now suppose that our initial disturbance in the source plane x= 0 is H(t), the 
Heaviside unit function defined by 

H(t) = 0, t <o, 
= 1, t > 0. (9) 
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In order to solve (2) for this type of source, it is convenient to represent H(f) in 
terms of our basic functions ((7), (8)). We readily find that 

It is also convenient to use the representation 

(10) 

(11) 

where the symbol 0’ for the lower limit means that the path of integration includes a 
quarter circle, of radius e tending to zero, around the origin in the clockwise 
(positive) sense (Fig. l), and Re denotes the real part. This notation will be used 
throughout this paper even if (as in the present case) the imaginary part of the in- 
tegral is infinite. 

We now immediately find, from (lo), (8), and (4), the displacement ~(x, t) for 
waves propagating from a Heaviside step function source H(t) in the plane x = 0: 

V(X, t) = i + k jm eCax sin p (t - x/v) 4, 
Cl 

(12) 

where a, p/v are given as functions of /3 (Eq. (3)). This result may be written in the 
form 

~(x,f)=k+ij%;exp [-x&l +a’,)“‘sin[q[j ] 

.sin i,,l +p’)-‘-‘cosjvj] $. (13) 

FIG. 1. Path of integration for I$. The small quarter circle has radius E, and E --t 0. 
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A direct comparison with Ricker’s generating function @ (for Ricker’s plane wave 
case) is obtained by differentiating (13) with respect to t, and we find that 

(14) 

It is clear, however, that (13) is not convenient for computations, in view of the os- 
cillatory nature of the integrand and the infinite range of integration. Accordingly, we 
transform the path of integration in the /3 plane. For this purpose it is more con- 
venient to use the representation (11) for H(t), and then in place of (13) we obtain 
the more compact form 

the path of integration being as in Fig. 1. 
In the earlier paper on the calculation of Ricker seismic wavelet functions, the 

author 111 has shown how to transform the path of integration in the p plane so that 
the exponent 

-ipx 
(1 + ip)l/Z + iP* (16) 

becomes real on the new path. The transformation was then used to obtain finite in- 
tegral representations for Ricker’s wavelet functions. In the present paper the same 
transformation is appropriate for our equation (15) for I& t). For convenience we 
describe this transformation briefly, but for full details the reader is referred to the 
earlier paper [ 1). 

We define a parameter 

k= x/t (17) 

and distinguish three cases: k < 1, k > 1, k = 1. In the complex /3 plane, we define r, 0 
by 

1 + i/?= yeHi, (18) 

so that 

(1 + ip)l12 = rl/2etJii2 (19) 

(we cut the j3 plane along a line through the branch point /3 = i, and parallel to ,the 
negative real axis), and we also write 

p = u + iu, (20) 
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FIG. 2. Schematic diagram showing transformed path of integration OAB for the case k < 1. The /r’- 
plane is cut through the branch point p= i, parallel to the negative real axis. 

A path is then chosen so that the exponent (16) becomes real. It is found that this oc- 
curs when 

or when 
f3=0 (21) 

). - l/2 + rp 3f2 = (2/k) cos 812, (22) 

which is indicated as the curved path AB in Fig. 2 for the case k < 1 and starts on the 
imaginary axis in the p plane at the point 

A = (0, 1 - ro), (23) 

where r0 is the positive root of the equation, 

r- ‘!2 + +:2 = 2/k, (24) 

obtained from (22) on putting 0= 0. The path of integration chosen goes from the 
origin 0 up or down the imaginary axis to the point A, and thence along the curve AB 
to infinity (Fig. 2). Since it is the real part of the integral that is required in (1.5). 
there is no contribution from the straight portion OA of the path, since on OA, 

/3 = iu, d/3 = idv 

and 

dlJ idt, -=-- 
iP 1’ ’ 

which is purely imaginary. Also on the curved path AB the value of the exponent 
(16) is 

p= (r+ l)(k’r ‘- 1)~ (25) 
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We need to take due account of the singularity at 0, and when we do this, we find 

for k > 1. If k < 1 we have to add 1 to this result, while for k = 1 we have to add + 
to the result (26). It should be emphasized that there is, nevertheless, no discontinuity 
in ~(x, t) at t = x (i.e., k = l), and this is also borne out by the numerical computa- 
tions. Here the factor 

r3 - k2 
(r + 3)(r2 - k*) d* 

is obtained as the value of 

on the path (22), after a simple, but somewhat lengthy, algebraic calculation. Also, 
the integration variable has been taken as 0, so that we have a finite range of integra- 
tion. It should be noted also that p + --co quite rapidly as 6’+ rr (t > 0), and the in- 
tegral (26) converges for all (positive) values of the parameters t, k. r has to be ob- 
tained as a function of 6’ from (22), which we write in the form 

r-l/2 

where 
+r- 312 = 2y (27) 

y = (l/k) cos 012. (28) 

Finding r involves solving a cubic equation, but this is done readily, and we have 
explicitly 

r = 3/(/,“’ _ p- r/3)2, (29) 

where 

p = 3 fly + (1 + 27~~)‘:~. (30) 

Incidentally, it is not difficult to show that the integral 

r3 - k2 
J=7j/o (r+ 3)(r2-k2) de (31) 

has the values 0, $, 1 for k < 1, k = 1, k > 1, respectively. 
By differentiations of (15) and application of our transformation, we obtain the 

following results, after some algebraic manipulations: 

av 1 ‘Tep -=- I i!t 71.” 
r4 - y2; t’t)+ 1)2 de (32) 
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a21y 1 T 
c ep 

t-+1 -=- 
at2 71,” r4(r + 3) 

[r’ - 3rh + k2r2(r + l)(r’ - 3r - 1) 

+ k4(r + l)“] d0 (33) 

dly 1-T 
ax I @  

2r3 + k2(r +1) do 

= -0 kr(r + 3) 

A21y 1 -T --- 
i %x2 YL(, 

e” r+l [2r’-6r2+2k2(r- l)ldO 
2r2(r + 3) 

6$/ 1 .-n 

ax2 iit 
- ) 
= -0 

ep 2(jr(::{) [6r” - 6r4 + 2kLr2(-r2 + 3r + 2) 

2k4(r + l)‘] do. (36) 

where p is given by (25). From the integrands of (33), (35), (36) we can (inciden- 
tally) verify immediately that li/ indeed satisfies the Stokes wave equation (2). Also, 
(32) has been given in a slightly different, but equivalent, form in the author’s earlier 
paper [ 11 as Ricker’s generating function @ . 

In the next section we establish an interesting property of the shape of the 
displacement-time graph ~(x, t) as a function of t for given x, and incidentally extend 
our esults by giving a finite integral representation for lb w(x, z)dt. 

3. THE DISPLACEMENT-TIME RECORD 

In Section 4 the results of the calculation of ~(x, t) as a function of t are tabulated 
and plotted for two values of x. In Fig. 3, for instance, w( 1, t) is plotted against t and 
compared with the function H(t - 1), which would represent the displacement in the 
case of ordinary elasticity in which (2) is replaced by the ordinary wave equation 

(37) 

assuming the same Heaviside unit function source in the plane x = 0. In general, the 
situation is as depicted schematically in Fig. 5 (the comparison being with the func- 
tion H(t -x)), and we propose to establish here that the shaded areas are equal, i.e., 
that 

j-* y/(x, t) dt = [ * 11 - t//(x, t) ] dt, (38) 
‘0 ‘X 

which means that (in this sense) the center of the pulse travels with unit numerical 
velocity. Equation (38) may be written in the equivalent form 

)-’ 1 1 - I,V(X, t)] dt = x, 
‘0 

(39) 
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FIG. 3. Displacement-time record ~(1, t) compared with the step function H(t - 1). 
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FIG. 4. Displacement-time record ~(10, t) compared with the step function H(t - 10). 
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FIG. 5. Schematic displacement-time record IJI(X, t) compared with the step function H(t - x). The 
shaded areas are equal. 
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and in order to establish this we seek a representation for 

similar to Eqs. (26) and (32~(36). 
The analysis is a little complicated, but basically we start again from (15) and in- 

tegrate with respect to t, giving 

which may be shown to give 

(40) 

We now apply our transformation as before, taking due note that since we now have 
a double pole at the origin, integrals on incomplete small circles around the origin 
have to be handled with great care. The final result may be put in the form 

for t > x, i.e., k < 1, while the term t-x must be omitted for t < x, i.e., k > 1. An 
elementary calculation shows that on our new integration path 

k2r2(r3 + 2r2 + 1) - r5 - 3r6 dB 
(r + 3)(r + l)‘(k’ - ,*)* ’ (42) 

and this expression is to be substituted into (41). 
In the case t =x, i.e., k = 1, the calculations are somewhat different, and we obtain 

j-x I//(X, r) dr = ; 1; & (r;:;r++’ 1’)’ d0. 
-0 

Here the limiting value of the integrand ‘when 0+ 0 is x/2. 
The desired result (39) follows immediately from (41) by letting t -+ co. 

4. NUMERICAL RESULTS 

(43) 

The displacement t,u(x, t) has been calculated as a function of t for .Y = 1 and 
x = 10. The results were obtained in the computer using gaussian quadrature applied 
to the integral (36) and are tabulated in Tables I and II, where they are compared 
with results obtained in earlier papers by the author [ 3, 4 1 using approximate Laplace 
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TABLE I 

Values of ~(x, f) for x= 1, f = O(O.1). 3.0 (OS), 10.0” 

I 

0 0 
0.1 0.0273611 
0.2 0.1295178 
0.3 0.23297 10 
0.4 0.3223330 
0.5 0.3983864 
0.6 0.4635544 
0.7 0.519934 
0.8 0.56914 
0.9 0.6124 
1.0 0.65063 16 
1.1 0.68466 
1.2 0.71492 
1.3 0.74203 1 
1.4 0.7663547 
1.5 0.7882223 
1.6 0.8079171 
1.7 0.8256824 
1.8 0.84 17278 
1.9 0.8562658 
2.0 0.8693663 
2.1 0.8812596 
2.2 0.8920401 
2.3 0.9018177 
2.4 0.9 106906 
2.5 0.9187463 
2.6 0.9260630 
2.7 0.9327109 
2.8 0.9387531 
2.9 0.9442463 
3.0 0.94924 17 
3.5 0.9682182 
4.0 0.9800759 
4.5 0.9875021 
5.0 0.9921589 
5.5 0.9950807 
6.0 0.9969144 
6.5 0.998065 1 
7.0 0.9987872 
7.5 0.9992400 
8.0 0.9995240 
8.5 0.9997020 
9.0 0.9998 135 
9.5 0.9998834 

10.0 0.9999271 

WC13 I) s,(t) 

(i.0304) 
(0.1282) 
0.2328 
0.3224 
0.3985 
0.4636 
0.5 199 
0.5691 
0.6124 
0.65063 
0.6846 1 
0.71491 
0.74203 
0.766354 
0.78822 
0.807917 
0.8256683 
0.841728 
0.856236 
0.869367 
0.881260 
0.892040 
0.901818 
0.910691 
0.918746 
0.926063 
0.932711 
0.938753 
0.944246 
0.949242 

“Also. for comparison, values of the equivalent quantity g,,(r. x) for x = 1, o = l/x = 1 taken from a 
previous paper by the author 14 1 are given. Values in parentheses are only approximate. 
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TABLE II 

Values of ~(x, t) for x = 10, I = 0( I ), 20” 

0 

2 
3 
4 
5 
6 
1 
8 
9 

10 
II 
12 
13 
I4 
I5 
16 
17 
18 
19 
20 

y/(lO,l) 

0 
3.905 x IO ‘I 
3.055 x IO o 
4.099x IO J 
5.500 x IO ’ 
0.0213915 
0.0800 106 
0.1685325 
0.28597 
0.4175 
0.5414849 
0.6639 
0.76020 
0.83507 
0.8902114 
0.9290335 
0.9553255 
0.9725408 
0.9834838 
0.9902597 
0.9943582 

s,,.,OllO) 

(i.0087) 
(-0.0023) 
(-0.0006) 

(0.0062) 
0.0274 
0.0800 
0.1685 
0.2860 
0.4175 
0.54748 
0.66384 
0.76020 
0.835068 
0.8902 I I 
0.929034 
0.955326 
0.972541 
0.983484 
0.9902597 
0.9943582 

” Also, for comparison, values of the equivalent quantity g,(t, x) for x = 10, u = l/x = 0.1 taken from 
a previous paper by the author (41 are given. Values in parentheses are only approximate. 

TABLE III 

Values of I:, v( 1, r) dr for several values of rU 

0.5 0.0906 0.09 1 1 
0.9 0.3018 0.2969 
1.0 0.3597 0.3601 
2.0 1.1386 1.1388 

” Column a is obtained from Eqs. (4 1) through (43) and may be compared with column b obtained by 
very rough numerical quadrature from Table 1. 
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transform inversion techniques based on rational approximations. The results are also 
displayed in graphical form in Figs. 3 and 4. As a check on the accuracy, the 
numerical integrations were carried out using both 16 and 32 gaussian points, and the 
results are given to seven places of decimals, except in the vicinity oft = x, where less 
accuracy was obtained. 

All results in Tables I and II are believed to be accurate to the number of places 
shown, except for possible slight inaccuracies in g,(t/x), and except for the values in 
parentheses as noted. The important point here is that the method of the present 
paper is essentially simpler than those in the author’s previous papers, in that no 
numerical Laplace transform inversion has to be performed. Also the results 
(32k(36) and (41t(43) show that the method is immediately applicable to the 
calculation of various derivatives and integrals of v/(x, t) and in general should be 
useful for further research on viscoelastic wave propagation. 

Table III gives a few values for & y/( 1, r) d-r for some selected values of t, and a 
comparison is made with results obtained by very approximate (trapezium rule) 
numerical quadrature from Table I. 

5. CONCLUSION 

A method of calculation due to the author has been used to obtain finite integral 
representations for the displacement and related quantities in a homogeneous 
viscoelastic solid for a plane wave emanating from a step function plane source. Ex- 
amples of numerical calculations based on these integrals have been given, high ac- 
curacy being readily attainable. It is hoped that the method will facilitate further 
research in this field. 
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